Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions
0000000000	000000000	0000000	0000000	

Hybrid High-order methods: Overview, implementation and latest developments

Matteo Cicuttin

École Nationale des Ponts et Chaussées (CERMICS) – Marne-la-Vallée INRIA – Paris

CEA Saclay, 12/07/2019

Outline				
0000000000	000000000	0000000	000000	00
Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Introduction to HHO
- **2** HHO in software: the DiSk++ library
- HHO for advanced applications
 - The Unfitted HHO method
 - The Multiscale HHO method

Introduction to HHO	HHO implementation	Unfitted HHO	msHH0	Conclusions
•0000000000		00000000	0000000	OO
Context				

HHO belongs to the family of **Di**scontinuous **Sk**eletal methods.

Solution of BVPs is approximated by

- attaching unknowns to mesh faces \implies "skeletal"
- using polynomials discontinuous in the mesh skeleton \implies "discontinuous"

HHO uses also cells unknowns

• eliminated by local Shur complement

Context, schemes related to HHO						
000000000	000000000	0000000	000000	00		
Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions		

Low order:

- Non-conforming FEM [Crouzeix, Raviart '73]
- Mimetic finite differences [Brezzi, Lipnikov, Shashkov '05]
- Hybrid finite volumes [Droniou, Eymard, Gallouet, Herbin '06-'10]

High order:

- Hybridizable DG (HDG) [Cockburn, Gopalakrishnan, Lazarov '09]
- Non-conforming VEM [Lipnikov, Manzini '14]

HHO, HDG and ncVEM are closely related [Cockburn, Di Pietro, Ern, 16]

Introduction to HHO	HHO implementation	Unfitted HHO 0000000	msHHO 0000000	Conclusions OO
HHO features				

- General mesh support
 - polygonal/polyhedral cells
 - hanging nodes
- Computational efficiency
 - HHO system size (3D) is $k^2 #$ (faces), dG is $k^3 #$ (cells)
 - Compact stencil
 - $O(h^{k+1})$ energy error convergence
- Implementation friendly
 - Construction independent of spatial dimension and cell shape

- Efficient implementation with generic programming
- Physical fidelity
 - HHO is locally conservative

Introduction to HHO	HHO implementation	Unfitted HHO 00000000	msHHO 0000000	Conclusions 00
Setting: Poi	sson model pro	blem		

Let $\Omega \subset \mathbb{R}^d$ with $d \in \{1,2,3\}$ be an open, bounded and connected polytopal domain. We will consider the model problem

$$\begin{aligned} -\Delta u &= f & \text{ in } \Omega, \\ u &= 0 & \text{ on } \partial \Omega, \end{aligned}$$

with $f \in L^2(\Omega)$. By setting $V := H_0^1(\Omega)$, its weak form is

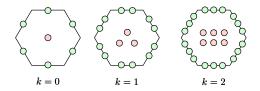
Find $u \in V$ such that $(\nabla u, \nabla v)_{\Omega} = (f, v)_{\Omega}$ for all $v \in V$.

Other boundary conditions can be considered as well.

msHHO Introduction to HHO

HHO Ingredient 0: Degrees of freedom

To discretize our problem we need a mesh. Then we choose the unknowns:



Unknowns: Polynomials of degree k attached to the cells and to the faces

Let $\mathcal{M} := (\mathcal{T}, \mathcal{F})$ be the mesh consisting of the set of cells \mathcal{T} and the set of faces \mathcal{F} in which Ω is discretized. For each $T \in \mathcal{T}$ we can define the local space of DoFs

$$U_T^k := \mathbb{P}_d^k(T) \times \left\{ \bigotimes_{F \in \mathcal{F}_T} \mathbb{P}_{d-1}^k(F) \right\}$$

High-order reconstruction

 $R_T^{k+1}: \underbrace{U_T^k}_{\text{cell/face dofs}} \to \underbrace{\mathbb{P}_d^{k+1}(T)}_{\text{higher-order poly}}$

 R_T^{k+1} solves for all $(v_T, v_{\partial T}) \in U_T^k$ and for all $w \in \mathbb{P}_d^{k+1}(T)$:

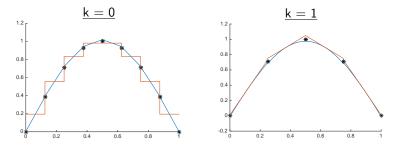
$$\begin{aligned} (\nabla R_T^{k+1}(v_T, v_{\partial T}), \nabla w)_T &:= -(v_T, \Delta w)_T + (v_{\partial T}, \boldsymbol{n}_T \cdot \nabla w)_F \\ &= (\nabla v_T, \nabla w)_T + (v_{\partial T} - v_T, \boldsymbol{n}_T \cdot \nabla w)_F \end{aligned}$$

together with the mean value condition $(R_T^{k+1}(v_T, v_{\partial T}), 1)_T = (v_T, 1)_T$.

 $R_T^{k+1}(v_T, v_{\partial T})$ is computed by solving local Neumann problem.

The reconst	ruction in actio	n		
0000000000	000000000	0000000	0000000	00
Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions

Consider the function $sin(\pi x)$ in [0,1]. We project it on U_T^k and then reconstruct, obtaining something in $\mathbb{P}_d^{k+1}(T)$:



Reconstruction is used to build bilinear form on $U_T^k \times U_T^k$:

 $a_T^{(1)}((v_T, v_{\partial T}), (w_T, w_{\partial T})) = (\nabla R_T^{k+1}(v_T, v_{\partial T}), \nabla R_T^{k+1}(w_T, w_{\partial T}))_T,$ which mimics *locally* the l.h.s. of our original problem.

HHO ingredier	t 2: Stabilizati	on operator		
00000000000	000000000	0000000	0000000	00
Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions

Stabilization needed: $\{\nabla \mathsf{R}_T^{k+1}(v_T, v_{\partial T}) = \mathbf{0}\} \Rightarrow \{v_T = v_{\partial T} = \text{const}\}.$

Setting $r_T^{k+1} := R_T^{k+1}(v_T, v_{\partial T})$, we introduce a penality on the difference between functions on faces and traces of functions in cell:

$$S_T^k(v_T, v_{\partial T}) := \Pi_{\partial T}^k \left((v_{\partial T} - v_T) + (I - \Pi_T^k) r_T^{k+1}(0, v_{\partial T} - v_T) \right).$$

This stabilization is a key feature of HHO: it gives h^{k+1} convergence in energy norm and h^{k+2} in L_2 norm (assuming elliptic regularity).

We introduce a second bilinear form on $U_T^k \times U_T^k$:

$$a_T^{(2)}((v_T, v_{\partial T}), (w_T, w_{\partial T})) = h_T^{-1}(S_T^k(v_T, v_{\partial T}), S_T^k(w_T, w_{\partial T}))_{\partial T},$$

where h_T denotes the diameter of the cell T.

Discrete pro	blem			
00000000000	000000000	0000000	0000000	00
Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions

For all $T \in \mathcal{T}$, we combine reconstruction and stabilization bilinear forms into a_T on $U_T^k \times U_T^k$ such that

$$a_T := a_T^{(1)} + a_T^{(2)}.$$

We then do a standard cell-wise assembly

$$a_{\mathcal{M}}(u_{\mathcal{M}}, w_{\mathcal{M}}) := \sum_{T \in \mathcal{T}} a_{T}((u_{T}, u_{\partial T}), (w_{T}, w_{\partial T})),$$
$$\ell_{\mathcal{M}}(w_{\mathcal{M}}) := \sum_{T \in \mathcal{T}} (f, w_{T})_{T}.$$

Finally we search for $u_{\mathcal{M}} := (u_{\mathcal{T}}, u_{\mathcal{F}}) \in U^k_{\mathcal{M},0}$ such that

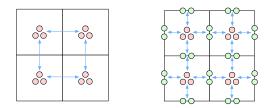
$$a_{\mathcal{M}}(u_{\mathcal{M}}, w_{\mathcal{M}}) = \ell_{\mathcal{M}}(w_{\mathcal{M}}), \qquad \forall w_{\mathcal{M}} := (w_{\mathcal{T}}, w_{\mathcal{F}}) \in U^k_{\mathcal{M},0},$$

where Dirichlet BCs are imposed strongly on the face unknowns. Cell-based unknowns are removed by local static condensation. Global problem has only face unknowns.

Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions
00000000●0		00000000	0000000	OO
A remark on	the stencil			

We compare dG (left) and HHO (right). In HHO:

- Communication between cells mediated by face unknowns
- Assembly simpler, is more FEM-like than dG-like



HHO seems to use much more DoFs, but don't be fooled:

- Cell DoFs get statically condensed
- Face DoFs grow like $O(k|\mathcal{F}|)$ in 2D and $O(k^2|\mathcal{F}|)$ in 3D.

A remark on polynomial degree						
0000000000	000000000	0000000	0000000	00		
Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions		

In HHO we can use different polynomial degrees on cells and faces. Consider the space $% \left({{{\rm{D}}_{{\rm{D}}}}_{{\rm{D}}}} \right)$

$$U_T^{l,k} := \mathbb{P}_d^l(T) \times \left\{ \bigotimes_{F \in \mathcal{F}_T} \mathbb{P}_{d-1}^k(F) \right\}$$

where $k \geqslant 0$ is the degree of the face unknowns and $l \geqslant 0$ the one of the cell unknowns:

- l = k: standard, equal order case
- l = k 1: same properties of equal order case $(k \ge 1)$
- l = k + 1:
 - again, same properties
 - Simpler stabilization, just $S_T^k(v_T, v_{\partial T}) := \prod_{\partial T}^k (v_{\partial T} v_T)$
 - More unknowns to statically condense

Thanks to this, *p*-refinement becomes easy.

Implementing	g DiSk method	s, goals		
0000000000	•00000000	0000000	0000000	00
Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions

As seen, HHO is formulated in a way that is

- Dimension-independent: we deal only with concepts of cells and faces, they have meaning in 1D, 2D, 3D
- Cell-shape-independent: we didn't make any assumption on cell shape

Mathematically this kind of formulation is natural.

Implementing	DiSk methods	, goals		
0000000000	•00000000	0000000	0000000	00
Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions

As seen, HHO is formulated in a way that is

- Dimension-independent: we deal only with concepts of cells and faces, they have meaning in 1D, 2D, 3D
- Cell-shape-independent: we didn't make any assumption on cell shape

Mathematically this kind of formulation is natural.

To support HHO development, we wanted a software platform with the same level of generality. We created DiSk++, a platform that:

- fully supports HHO and is able to run it on any kind of mesh
- is efficient, on any kind of mesh
- allows the user to write its code without caring about the details of the underlying mesh (element shape/space dimension)

In one sentence: write the method once, run it on any kind of mesh - even the ones not supported yet.

DiSk++ is open-source: https://github.com/wareHHOuse/diskpp

Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions
0000000000	000000000	0000000	0000000	00
DiSk++				

By using generic programming¹ DiSk++ gives to the user a simple interface to code efficiently numerical methods like HHO, HDG, dG, ...

Generic programming is a technique that allows to write algorithms and data structures where also types are parameters. It enables to build zero cost abstractions.

Generic programming is about

- Code reuse: with the correct abstractions in place, the same code can be reused many times
- Performance: templated C++ code can frequently be optimized much more than C or Fortran
- Correctness: DiSk++ leverages the C++ type system to protect the user from vast classes of bugs

• ...

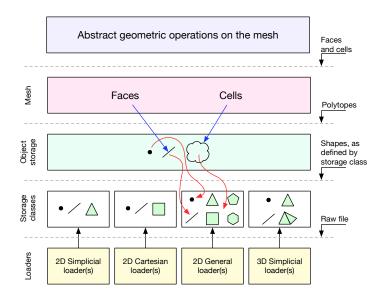
¹MC, D. A. Di Pietro, A. Ern Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming, J. Comp. Appl. Math. Vol. 334, 2018.

Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions
0000000000	000000000	0000000	0000000	00
Abstractions	in DiSk++			

DiSk++ is essentially a collection of abstraction layers to give an uniform set of operations on any mesh:

- Mesh loading (from different file formats)
- Mesh representation [biggest issue]
- Geometric operations
- Quadratures/Basis functions
- Solution Numerical methods components (i.e. HHO operators)

The overall	architecture of	DiSk++		
0000000000	000000000	0000000	0000000	00
Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mesh element	aueries in Di	Sk++		
0000000000	000000000	0000000	000000	00
Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions

Example: suppose we want to compute geometric properties of mesh elements.

DiSk++ allows code as general as:

```
for (auto& cl : msh) {
    //measure: volume, area, lenght depending on dimension
    auto cell_meas = measure(msh, cl);
    auto cell_bar = barycenter(msh, cl);
    auto fcs = faces(msh, cl); //get faces
    for (auto& fc : fcs) { //loop on them
        auto face_meas = measure(msh, fc);
        auto face_bar = barycenter(msh, fc);
    }
}
```

This code will work on any mesh you will throw at it as efficiently as possible! The abstraction is zero cost.

Quadratures	and basis fund	ctions in DiSk	< ++	
0000000000	000000000	0000000	0000000	00
Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions

Also quadratures and basis functions are generic:

```
for (auto& cl : msh) {
  auto basis = make_scalar_monomial_basis(msh, cl, degree);
  auto qps = integrate(msh, cl, 2 * degree);
  for (auto& qp : qps) {
    auto dphi = basis.eval_gradients(qp.point());
    stiffness_matrix += qp.weight() * dphi * trans(dphi);
  }
}
```

- Simplicial mesh \implies simplicial quadratures
- Cartesian mesh \implies tensorized Gauss points
- General mesh \implies split in simplices

Again, the user does not need to know anything about the underlying mesh.

You'll get automatically the right thing you need.

Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions
0000000000	0000000000	0000000	000000	00
HHO, a lay	er on DiSk++			

DiSk++ is mostly "infrastructure" not tied to HHO.

HHO is just a thin layer over DiSk++: you can easily implement other methods.

Thanks to this infrastructure, HHO operators we discussed are implemented in a completely mesh- and dimension-independent fashon.

- Gradient reconstruction operator (\approx 80 LOCs)
- Stabilization operator (\approx 70 LOCs)

Debug and maintenance become much easier!

To solve a problem with HHO, just combine the blocks provided by the library!

Assembly o	f our diffusion p	roblem		
0000000000	0000000000	0000000	000000	00
Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions

Going back to our initial toy problem, its assembly loop in DiSk++ reduces to

```
auto assembler = make_diffusion_assembler(msh, hdi);
```

```
for (auto& cl : msh) {
   auto cb = make_scalar_monomial_basis(msh, cl, hdi);
   auto gr = make_hho_scalar_laplacian(msh, cl, hdi);
   auto stab = make_hho_scalar_stabilization(msh, cl, gr, hdi);
   auto rhs = make_rhs(msh, cl, cb, rhs_fun);
   auto A = gr + stab;
   assembler.assemble(msh, cl, A, rhs, dirichlet_bc);
}
```

```
assembler.finalize();
```

Latest develo	pments of DiS	5k++		
Introduction to HHO	HHO implementation	Unfitted HHO	msHH0	Conclusions
00000000000	0000000000	00000000	0000000	OO

Started in 2016, in the last year DiSk++ evolved a lot.

 It is a community effort. Four main developers: K. Cascavita, MC, G. Delay, N. Pignet. Join us on the wareHHOuse organization in GitHub:

https://github.com/wareHHOuse

- Simplified some parts of the code, in particular the construction of HHO operators, much cleaner API now
- Added many automatic tests. We are able to detect automatically many problems/regressions in the code.

- Benchmarked some parts against other HHO implementations
- Speed improvements

Stay tuned: soon a guided HHO tutorial will be available!

Current capa	abilities of DiSk	< ++		
Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions
00000000000	000000000●	00000000	0000000	OO

We added many new modules for

- different computational mechanics problems
- variants of the HHO method

DiSk++ allowed us to deploy HHO on many domains:

- Scalar diffusion (MC)
- Unfitted HHO (MC, GD)
- Linear elasticity (MC, NP)
- Eigenvalue problems (MC)
- Hyperelasticity (NP)

- Plasticity (NP)
- Bingham flows (KC)
- Signorini problem (KC)
- Obstacle problems (MC)

• Multiscale HHO (MC)

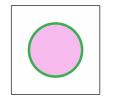
Introduction to HHO	HHO implementation	Unfitted HHO •0000000	msHHO 0000000	Conclusions 00
Unfitted HH	O: model probl	lem		

Let $\Omega \subset \mathbb{R}^d$ such that:

$$\bar{\Omega} = \bar{\Omega^1} \cup \bar{\Omega^2}, \qquad \Gamma = \partial \Omega^1 \cap \partial \Omega^2$$

The following interface problem is considered:

$$\begin{cases} -\mathsf{div}(\kappa \nabla u) = f & \text{ in } \Omega^1 \cup \Omega^2, \\ \llbracket u \rrbracket_{\Gamma} = g_D & \text{ on } \Gamma, \\ \llbracket \kappa \nabla u \rrbracket_{\Gamma} \cdot \boldsymbol{n}_{\Gamma} = g_N & \text{ on } \Gamma \end{cases}$$



Diffusivity:

 κ_1 in Ω^1

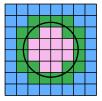
Diffusivity: $\kappa_1 \text{ in } \Omega^1$ $\kappa_2 \text{ in } \Omega^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction to HHO	HHO implementation	Unfitted HHO ○●○○○○○○	msHHO 0000000	Conclusions OO
Unfitted me	shing			

We want to mesh Ω without respecting Γ :

- Uncut cells of Ω^1
- Uncut cells of Ω^2 (if interface problem)
- \bullet Cells cut by Γ

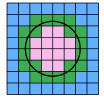


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction to HHO	HHO implementation	Unfitted HHO ○●○○○○○○	msHHO 0000000	Conclusions OO
Unfitted me	shing			

We want to mesh Ω without respecting Γ :

- Uncut cells of Ω^1
- Uncut cells of Ω^2 (if interface problem)
- \bullet Cells cut by Γ



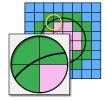
Let T be a cut cell. Define $T^i = T \cap \Omega^i, i \in \{1, 2\}$

• High-contrast if $\min(\kappa_1, \kappa_2) \ll \max(\kappa_1, \kappa_2)$

Introduction to HHO	HHO implementation	Unfitted HHO 0●000000	msHHO 0000000	Conclusions 00
Unfitted me	shing			

We want to mesh Ω without respecting Γ :

- Uncut cells of Ω^1
- Uncut cells of Ω^2 (if interface problem)
- Cells cut by Γ

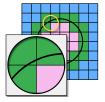


- Let T be a cut cell. Define $T^i = T \cap \Omega^i, i \in \{1, 2\}$
 - High-contrast if $\min(\kappa_1, \kappa_2) \ll \max(\kappa_1, \kappa_2)$
 - Degenerate cut if $\min(|T^1|, |T^2|) \ll \max(|T^1|, |T^2|)$

Introduction to HHO	HHO implementation 000000000	Unfitted HHO ○●○○○○○○	msHHO 0000000	Conclusions OO
Unfitted mes	shing			

We want to mesh Ω without respecting Γ :

- Uncut cells of Ω^1
- Uncut cells of Ω^2 (if interface problem)
- \bullet Cells cut by Γ



Let T be a cut cell. Define $T^i = T \cap \Omega^i, i \in \{1, 2\}$

- High-contrast if $\min(\kappa_1, \kappa_2) \ll \max(\kappa_1, \kappa_2)$
- Degenerate cut if $\min(|T^1|, |T^2|) \ll \max(|T^1|, |T^2|)$

HHO provides robustness

- w.r.t. high contrast, via diffusion-dependent averaging [Ern, Stephansen, Zunino '09]
- w.r.t. degenerate cuts, via agglomeration \rightarrow very natural for HHO.

Introduction to HHO	HHO implementation	Unfitted HHO	msHHO 0000000	Conclusions
Unfitted HHO				00

- Uncut cells: standard HHO unknowns
- Cut cells: a pair of HHO unknowns → one function on each side of the cut
- No unknowns on the cut

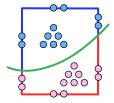
In detail, on cut cells unknowns are

$$\hat{V}_{T} = (V_{T}, \partial V_{T}) = ((v_{T^{1}}, v_{T^{2}}), (v_{\partial T^{1}}, v_{\partial T^{2}})) \in \hat{\mathcal{X}}_{T}$$

belonging to the space

$$\hat{\mathcal{X}}_T = \left(\left(\mathbb{P}^{k+1}(T^1) \times \mathbb{P}^{k+1}(T^2) \right) \times \left(\mathbb{P}^k(\mathcal{F}_{(\partial T)^1}) \times \mathbb{P}^k(\mathcal{F}_{(\partial T)^2}) \right) \right).$$

but how do we join the two sides?



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions
00000000000		000€0000	0000000	00
Nitsche mort	aring			

To "glue together" the two sides we use standard Nitsche mortaring:

$$n_T(V,W) = \sum_{i \in \{1,2\}} \int_{T^i} \kappa^i \nabla v^i \cdot \nabla w^i + \int_{T^\Gamma} \eta \frac{\kappa^1}{h_T} \llbracket V \rrbracket_{\Gamma} \llbracket W \rrbracket_{\Gamma}$$
$$- \int_{T^\Gamma} (\kappa \nabla v)^1 \cdot \boldsymbol{n}_{\Gamma} \llbracket W \rrbracket_{\Gamma} + (\kappa \nabla w)^1 \cdot \boldsymbol{n}_{\Gamma} \llbracket V \rrbracket_{\Gamma}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Penalization η has to be taken large enough, as in dG.

Unfitted HHC) operators	00000000	000000	00
Unfitted HHC) operators			

As usual, reconstruction maps from HHO unknowns to polynomials

Let $\hat{V}_T = (V_T, V_{\partial T}) \in \hat{\mathcal{X}}$. The reconstruction is obtained by solving, for all $Z \in \mathbb{P}^{k+1}(T^1) \times \mathbb{P}^{k+1}(T^2)$:

$$n_T(R_T^{k+1}(\hat{V}_T), Z) = n_T(V_T, Z) - \sum_{i \in \{1,2\}} \int_{(\partial T)^i} (v_{T^i} - v_{(\partial T)^i}) \boldsymbol{n} \cdot \kappa^i \nabla z^i$$

The stabilization is done as usual by penalizing difference between trace of function on cells and function on faces:

$$s_T(\hat{V}_T, \hat{W}_T) := \sum_{i \in \{1,2\}} \kappa^i h_T^{-1} \int_{(\partial T)^i} \Pi^k_{(\partial T)^i} \left((v_{T^i} - v_{(\partial T)^i}) (w_{T^i} - w_{(\partial T)^i}) \right).$$

Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions
		00000000		
Discrete pro	oblem			

Two cases to handle in discrete problem assembly.

• Cut cells
$$T \in \mathcal{T}^{\Gamma}$$
:

$$\hat{a}_{T}^{\Gamma}(\hat{V}_{T},\hat{W}_{T}) = n_{T}(R_{T}^{k+1}(\hat{V}_{T}), R_{T}^{k+1}(\hat{W}_{T})) + s_{T}(\hat{V}_{T}, \hat{W}_{T})$$
$$\hat{l}_{T}^{\Gamma}(\hat{W}_{T}) = \sum_{i \in \{1,2\}} \int_{T^{i}} f w_{T_{i}} + \int_{T^{\Gamma}} g_{N} w_{T^{2}} + g_{D} \Phi_{T}(W_{T})$$

where $\Phi_T(W_T) = -\kappa^1 \nabla w_{T^1} \cdot \boldsymbol{n}_{\Gamma} + \eta \kappa^1 h_T^{-1} \llbracket W_T \rrbracket_{\Gamma}$ (cf. dG) • Uncut cells $T \in \mathcal{T}^{\backslash \Gamma}$:

$$\hat{a}_{T}^{\backslash \Gamma}(\hat{v}_{T}, \hat{w}_{T}) = a_{T}(r_{T}^{k+1}(\hat{v}_{T}), r_{T}^{k+1}(\hat{w}_{T})) + s_{T}(\hat{v}_{T}, \hat{w}_{T})$$
$$\hat{l}_{T}^{\backslash \Gamma}(\hat{w}_{T}) = \int_{T} f w_{T}$$

Cell unknowns are statically condensed as in regular HHO.

Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions
		00000000		
Discrete pro	blem, assembly	,		

The discrete problem is assembled pretty much like standard HHO. Global space of unknowns of $\Omega^i\colon$

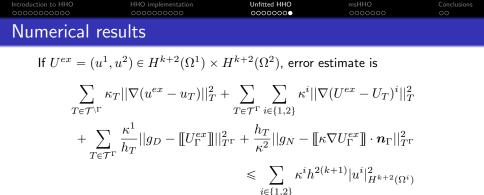
$$\hat{\mathcal{X}}_h^i = \mathbb{P}^{k+1}(\mathcal{T}^i) \times \mathbb{P}^k(\mathcal{F}^i), \qquad i \in \{1, 2\}$$

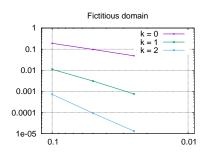
Global space on Ω is $\hat{\mathcal{X}}_h = \hat{\mathcal{X}}_h^1 \cup \hat{\mathcal{X}}_h^2$. We can consider $\hat{\mathcal{X}}_{h0}$ where we enforce Dirichlet on face unknowns.

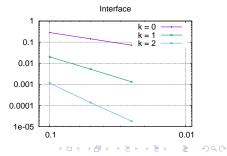
Global bilinear forms are:

$$\hat{a}_h(\hat{V}_h, \hat{W}_h) = \sum_{T \in \mathcal{T}^{\backslash \Gamma}} \hat{a}_T^{\backslash \Gamma}(\hat{v}_T, \hat{w}_T) + \sum_{T \in \mathcal{T}^{\Gamma}} \hat{a}_T^{\Gamma}(\hat{V}_T, \hat{W}_T)$$
$$\hat{l}_h(\hat{W}_h) = \sum_{T \in \mathcal{T}^{\backslash \Gamma}} \hat{l}_T^{\backslash \Gamma}(\hat{w}_T) + \sum_{T \in \mathcal{T}^{\Gamma}} \hat{l}_T^{\Gamma}(\hat{W}_T)$$

We look for $\hat{V}_h \in \hat{\mathcal{X}}_{h0}$ s.t. $\hat{a}_h(\hat{V}_h, \hat{W}_h) = \hat{l}_h(\hat{W}_h), \forall \hat{W}_h \in \hat{\mathcal{X}}_{h0}.$







Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions
0000000000	000000000	0000000	•000000	00
The Multiscal	e HHO method			

Let $\Omega \subset \mathbb{R}^d$, $d \in \{2,3\}$; $\varepsilon > 0$ and much smaller than the length scale ℓ_Ω of Ω . We consider

$$\begin{cases} -\mathsf{div}(\mathbb{A}_{\varepsilon}\nabla u_{\varepsilon}) = f & \text{ in } \Omega, \\ u_{\varepsilon} = 0 & \text{ on } \partial\Omega, \end{cases}$$

where $f \in L^2(\Omega)$ is non-oscillatory and \mathbb{A}_{ε} is an oscillatory, uniformly elliptic and bounded matrix-valued field on Ω .

- Monoscale methods: too many DoFs needed to resolve $\mathbb{A}_{arepsilon}$
- Multiscale methods come to rescue: encode the oscillations of \mathbb{A}_{ε} in the basis functions of the approximation space, and approximate u_{ε} on a coarse mesh \mathcal{T}_H with $\varepsilon \leqslant H \leqslant \ell_{\Omega}$

Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions
0000000000	000000000	0000000	000000	00
msHHO				

Ingredients of the msHHO method:

- Discrete unknowns are polynomials of order $k \ge 0$ on faces and $l \ge 0$ on cells of \mathcal{T}_H (as in monoscale HHO)
- \bullet Oscillatory basis functions encoding \mathbb{A}_{ε} for cells and faces
- Reconstruction operator based on oscillatory basis functions

Two variants of the method: equal order method (l = k) and mixed order method (l = k - 1)

Literature

- prior art for k = 0: msFEM à la Crouzeix-Raviart [Le Bris, Legoll, Lozinski 13]
- msHHO method provides an extension: arbitrary order and polytopal meshes

msHHO approximation space is

 $V_{\varepsilon}^{k+1}(T) = \{ v \in H^1(T) \mid \nabla \cdot (\mathbb{A}_{\varepsilon} \nabla v) \in \mathbb{P}^{k-1}(T), \ \boldsymbol{n}_T \cdot \mathbb{A}_{\varepsilon} \nabla v \in \mathbb{P}^k(\partial T) \}$

The basis functions of $V^{k+1}_{\varepsilon}(T)$ are

• Cell basis functions (for $k \ge 1$)

$$\varphi_{\varepsilon,T}^{k+1,i} = \underset{\substack{\varphi \in H^1(T)\\ \Pi_F^k(\varphi) = 0, \ \forall F \subset \partial T}}{\arg\min} \int_T \left[\frac{1}{2} \mathbb{A}_{\varepsilon} \nabla \varphi \cdot \nabla \varphi - \Phi_T^{k-1,i} \varphi \right]$$

where $(\Phi^{k-1,i}_T)_{1\leqslant i\leqslant N^{k-1}_d}$ is a basis of $\mathbb{P}^{k-1}(T)$

• and Face basis functions (for $k \ge 0$)

$$\begin{split} \varphi_{\varepsilon,T,F}^{k+1,j} &= \mathop{\arg\min}_{\substack{\varphi \in H^1(T) \\ \Pi_F^k(\varphi) = \Phi_F^{k,j} \\ \Pi_\sigma^k(\varphi) = 0, \; \forall \sigma \subset \partial T \setminus \{F\}}} \int_T \left[\frac{1}{2} \mathbb{A}_{\varepsilon} \nabla \varphi \cdot \nabla \varphi \right] \\ \end{split}$$
where $(\Phi_F^{k,j})_{1 \leq j \leq N_{d-1}^k}$ is a basis of $\mathbb{P}^k(F)$

Given a pair $(v_T, v_{\partial T}) \in \mathbb{P}^l(T) \times \mathbb{P}^k(\partial T)$, the reconstruction returns an object of $V_{\varepsilon}^{k+1}(T)$.

$$R^{k+1}_{\varepsilon,T}$$
 : $\mathbb{P}^{l}(T) \times \mathbb{P}^{k}(\partial T)$
cell and face unknowns

• $r := R_{\varepsilon,T}^{k+1}(v_T, v_{\partial T}) \in V_{\varepsilon}^{k+1}(T)$ solves, $\forall w \in V_{\varepsilon}^{k+1}(T)$,

 $(\mathbb{A}_{\varepsilon}\nabla \boldsymbol{r},\nabla w)_{\boldsymbol{L}^{2}(T)}=-(\boldsymbol{v_{T}},\nabla\cdot(\mathbb{A}_{\varepsilon}\nabla w))_{L^{2}(T)}+(\boldsymbol{v_{\partial T}},\boldsymbol{n_{T}}\cdot\mathbb{A}_{\varepsilon}\nabla w)_{L^{2}(\partial T)}$

together with the mean-value condition $(r, 1)_{L^2(T)} = (v_T, 1)_{L^2(T)}$

- Oscillatory basis functions and R^{k+1}_{ε,T} precomputed offline by meshing T (of size H > ε) with subcells of size h < ε, and using a mono-scale method to approximate the minimizers
- Also in msHHO, reconstruction operator used to mimic problem l.h.s.

Introduction to HHO	HHO implementation 000000000	Unfitted HHO 00000000	msHHO 0000●00	Conclusions 00
Mixed-order	msHHO			

Consider the mixed-order variant of msHHO, where l = k - 1

• The local msHHO bilinear form is

$$\hat{a}_{\varepsilon,T}(\cdot,\cdot) = (\mathbb{A}_{\varepsilon} \nabla R^{k+1}_{\varepsilon,T}(\cdot), \nabla R^{k+1}_{\varepsilon,T}(\cdot))_{L^2(T)}$$

- Mixed order method requires no stabilization: we explored the whole space $V^{k+1}_\varepsilon(T)$ to resolve the oscillatory nature of the problem
- Error estimate:

$$\left(\sum_{T\in\mathcal{T}_H} \|\mathbb{A}_{\varepsilon}^{\frac{1}{2}} \nabla (u_{\varepsilon} - R_{\varepsilon,T}^{k+1}(u_T, u_{\partial T}))\|_{L^2(T)}^2\right)^{\frac{1}{2}} \leq c \left(\varepsilon^{\frac{1}{2}} + H^{k+1} + (\varepsilon/H)^{\frac{1}{2}}\right)$$

where the right-hand side term is the usual resonance error.

Introduction to HHO	HHO implementation 000000000	Unfitted HHO 00000000	msHHO ○○○○○●○	Conclusions 00
Equal-order	msHHO			

Consider the equal-order variant of msHHO, where l = k

- We still reconstruct in $V^{k+1}_{\varepsilon}(T)$ using $R^{k+1}_{\varepsilon,T}$
- The local msHHO bilinear form is

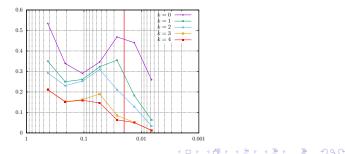
$$\begin{split} \hat{a}_{\varepsilon,T}(\cdot,\cdot) &= (\mathbb{A}_{\varepsilon} \nabla R_{\varepsilon,T}^{k+1}(\cdot), \nabla R_{\varepsilon,T}^{k+1}(\cdot))_{L^{2}(T)} + h_{T}^{-1}(S_{\varepsilon,\partial T}^{k}(\cdot), S_{\varepsilon,\partial T}^{k}(\cdot))_{L^{2}(\partial T)} \\ S_{\varepsilon,\partial T}^{k}(v_{T}, v_{\partial T}) &= v_{T} - \Pi_{T}^{k}(R_{\varepsilon,T}^{k+1}(v_{T}, v_{\partial T})) \end{split}$$

- stabilization needed because we reconstruct in $V_{\varepsilon,T}^{k+1}$ and not in $\tilde{V}_{\varepsilon,T}^{k+1} = \{v \in H^1(T) \mid \nabla \cdot (\mathbb{A}_{\varepsilon} \nabla v) \in \mathbb{P}^k(T), \ \boldsymbol{n}_T \cdot \mathbb{A}_{\varepsilon} \nabla v \in \mathbb{P}^k(\partial T)\}$
- stabilization can be avoided by computing additional oscillatory basis functions to span $\tilde{V}_{\varepsilon,T}^{k+1}$; see [Le Bris, Legoll, Lozinski 14] for k=0 (one additional basis function)
- Error estimate: same as in mixed-order case

Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions		
0000000000	000000000	0000000	000000	00		
Numerical experiment						

- Periodic setting with $\mathbb{A}_{\varepsilon}(x, y) = a(x/\varepsilon, y/\varepsilon)\mathbb{I}_2$, $\varepsilon = \pi/150 \approx 0.02$, $a(x, y) = 1 + 100 \cos^2(\pi x) \sin^2(\pi y)$
- Hierarchical triangular meshes of size $H_l = 0.43 \times 2^{-l}$, $l \in \{0.9\}$
 - resonance expected for $H_4 > \varepsilon > H_5$
 - reference solution computed for $l_{\rm ref}=9$ and $k_{\rm ref}=2$
 - $\bullet\,$ cell problems: mono-scale HHO, degree 1, mesh level l=8

Energy error (relative) as a function of H_l , equal-order msHHO, $k \in \{0, \dots, 4\}$



Introduction to HHO	HHO implementation	Unfitted HHO	msHHO	Conclusions
				•0
Conclusions				

- HHO has different assets to offer:
 - competitive computational cost
 - one formulation supports completely general meshes in any dimension

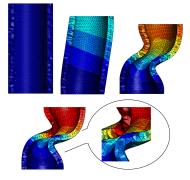
- physical fidelity
- implementation-friendly
- Widely deployed on many classes of problems
- Software library available: https://github.com/wareHHOuse/

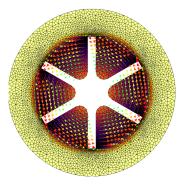
Introduction to HHO

HO implementation

Unfitted HHO 00000000 msHHO 0000000 Conclusions

Thank you for your attention!





N. Pignet, Large deformations of a sheared cylinder

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

<u>e-mail</u> matteo.cicuttin@enpc.fr <u>code</u>: https://github.com/wareHHOuse/diskpp