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Intro

Hybrid High-Order (HHO) methods are a recent development [Di Pietro,

Ern, Lemaire 2014] in the family of Discontinuous Skeletal methods (HDG
[Cockburn et al. 2009], WG [Wang et al. 2013], ...)

Arbitrary order

Any element shape

Dimension-independent formulation

Simple hp-refinement

HHO is well established: wide literature (mostly in mechanics) + 2
books. In this talk:

Intro to HHO on the Poisson equation

HHO for time-harmonic Maxwell

A real-world application of HHO in electromagnetics



Introduction HHO on Poisson equation HHO on Maxwell Real world test case

Model problem

First part of this talk: Poisson equation with homogeneous BCs. Let
Ω Ă Rd with d P t1, 2, 3u

#

´∆u “ f in Ω

u “ 0 on BΩ

In weak form, for f P L2pΩq find u P H1
0 pΩq s.t.

p∇u,∇vqL2pΩq “ pf , vqL2pΩq @v P H1
0 pΩq

In the following we assume that Ω is partitioned with an appropriate
polyhedral mesh MpT ,Fq.
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Discontinuous Galerkin recall: discrete space, stencil

Recall that the discrete DG space is made of polynomials of degree k
attached to each mesh cell T:

Vh :“ tv P L2pΩq | @T PM, v|T P Pk
dpT qu.

Volume term approximating solution locally + coupling via
numerical fluxes. A cell T talks with all the adjacent cells.

Global discrete solution is discontinuous.

T1 T2 T3
pT1 pT2 pT3

Number of DOFs grows like Op#T ¨ kdq. Can we do better?
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Reconstruction operator - I

Consider the divergence theorem on an element T

p∇u,∇vqT “ pu,∆vqT `
ÿ

FiPBT

pu,∇v ¨ n̂qFi

Replace u by different functions on the cell and its faces, and introduce
the operator R

p∇RpuT , uBT q,∇vqT :“ puT ,∆vqT `
ÿ

FiPBT

puFi ,∇v ¨ n̂qFi

“ p∇uT ,∇vqT `
ÿ

FiPBT

puFi ´ uT ,∇v ¨ n̂qFi

uF
uT|F

uT

uT : cell-based function

uFi : face-based function

uBT : puF1 , . . . , uFnq

We call R as defined reconstruction opera-
tor. Note that the operator is completely
local.
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Reconstruction operator - II

More precisely, let uT P P
k
dpT q, uFi P P

k
d´1pFi q and v P Pk`1

d pT q. We
define the local HHO space

Uk
T :“ Pk

dpT q ˆ

#

ą

FiPBT

Pk
d´1pFi q

+

.

Let uT :“ puT , uBT q P U
k
T . The reconstruction R : Uk

T Ñ Pk`1
d pT q is

uniquely defined for all uT P U
k
T by the equations

p∇RpuT q,∇vqT “ p∇uT ,∇vqT `
ÿ

FPBT

puFi ´ uT ,∇v ¨ n̂qF

pRpuT q, 1qT “ puT , 1qT

R enjoys an high-order approximation property: from uT and uBT of
degree k we can reconstruct a polynomial of order k ` 1 on the cell.
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Reconstruction operator - III
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The reconstruction operator is used to mimic the grad-grad term of our
model problem

aT puT , vT q :“ p∇RpuT q,∇RpvT qqT

Note that inside this term hides a degree k ` 1 stiffness matrix.
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Stabilization - I

There is an issue however: uT and uBT are still unrelated ùñ ∇R “ 0
does not imply uT “ uBT “ constant ùñ a stabilization is needed.

We penalize the difference between uF and the trace of uT . First try:

zT puT , vT q :“
ÿ

FiPBT

h´1
Fi
puFi ´ π

k
Fi
puT q, vFi ´ π

k
Fi
pvT qqFi

uF
uT|F

uT Ask to “glue together” uF and uT on
each face

Works, but insufficient to achieve
optimal convergence rate
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Stabilization - II

There are two alternative ways to achieve optimal convergence rate:

Use a more complex stabilization

sT puT , vT q :“
ÿ

FiPBT

h´1
F puFi ´ π

k
Fi
PkpuT q, vFi ´ π

k
Fi
PkpvT qqFi

PkpwT q :“ wT ´ RpwT q ` π
k
T pRpwT qq

Essentially, it takes into account high-order components

Take uT P P
k`1
d pT q and uFi P P

k
d´1pFi q

On standard cells, method 2 makes assembly slightly cheaper.

Both alternatives allow the method to reach convergence rate Ophk`2q in
L2 norm and Ophk`1q in H1 norm.

Note that again, stabilizations are completely local.
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Discrete HHO space, assembly

The global HHO space is obtained collecting
cell and face DOFs

Uk
h :“

#

ą

TPT
Pk

dpT q

+

ˆ

#

ą

FPF
Pk

d´1pF q

+

. T1 T2

uT1

uT2

uF

Dirichlet BCs imposed strongly as Uk
h,0 :“

 

uh P U
k
h | uF “ 0 @F P Γ

(

.

Note that the face DOFs are single valued. Let LT be the standard
local-to-global DOF mapping. By standard FEM assembly we compute

ahpuh, vhq :“
ÿ

TPT
aT pLTuT , LT vT q ` sT pLTuT , LT vT q,

lhpvhq :“
ÿ

TPT
pf , pLTuT , 0qqT .

We finally look for uh P Uk
h,0 such that

ahpuh, vhq “ lhpvhq, @vh P Uk
h,0.
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HHO stencil

Remember that HHO operators are defined locally on cells: this means
that cell unknowns talk only with face unknowns.

T1 T2

uT1

uT2

uF

Cell unknowns can be eliminated locally during assembly via Schur
complement.

The global problem is posed in terms of face unknowns only

No. of DOFs grows like Op#F ¨ kd´1q vs. Op#T ¨ kdq of DG ùñ

we expect an improvement over DG on standard elements.
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Does HHO pay off?

Poisson equation on Ω “ r0, 1s3. Solver: PARDISO, memory in MB.

HHO(k,k) SIP-DG(k ` 1)
k DoFs Mflops Mem DoFs Mflops Mem
0 5760 38 39 12288 787 85
1 17280 1006 106 30720 11429 319
2 34560 8723 292 61440 92799 1108
3 57600 40389 719 107520 497245 3215

Tetrahedral mesh, 3072 elements. k=3: HHO is 12.3x more efficient in computation,
4.5x more efficient in memory usage.

HHO(k, k) SIP-DG(k ` 1)
k DoFs Mflops Mem DoFs Mflops Mem
0 11520 310 64 16384 6677 168
1 34560 9671 293 40960 104199 765
2 69120 58977 884 81920 845545 2844
3 115200 349664 2412 143360 4592328 8490

Hexahedral mesh, 4096 elements. k=3: HHO is 13.1x more efficient in computation,
3.5x more efficient in memory usage.
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HHO on indefinite Maxwell problem

We want to solve the electromagnetic time-harmonic wave equation

p∇ˆ e,∇ˆ vqΩ ´ ω
2µεpe, vqΩ “ pf, vqΩ.

Quantities appearing in the equation:

ω: angular frequency

µ, ε: piecewise constant material parameters

e, v P H0pcurl ; Ωq: unknown electric field and test function

f: source

Motivation: curl-curl is difficult for iterative solvers, direct solvers are
usually employed ùñ being memory-efficient is imperative.
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HHO function spaces

Local HHO function space employs vector-valued polynomials:

Uk
T :“ Pk

3pT q
3 ˆ

#

ą

FPBT

Pk
2pF q

2

+

.

Cell-based polynomials have values in C3

Face-based polynomials have values in C2 tangent to the face itself
ùñ reflects tangential continuity of e at the continuous level

The global discrete problem space is introduced as

Uk
h :“

#

ą

TPT
Pk

3pT q
3

+

ˆ

#

ą

FPF
Pk

2pF q
2

+

,

Dirichlet conditions on Γ Ă BΩ are imposed by forcing to zero face DOFs

Uk
h,0 :“

 

uh P U
k
h | uF “ 0 @F P Γ

(

.
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HHO operators

In the same spirit of the reconstruction used for Poisson equation, we
define the curl reconstruction as

pCpuT q, vqT :“ puT ,∇ˆ vqT `
ÿ

FPBT

puF , v ˆ n̂qF , @v P Pk
3pT q

3

Let γt,F puq :“ n̂ˆpuˆ n̂q and πk
γ “ πk

F ˝γt,F . We define the stabilization

sT puT , vT q :“
ÿ

FPBT

ω2µε

hF
puF ´ π

k
γpuT q, vF ´ π

k
γpvT qqF ,

with the aim of penalizing the difference between the face function and
the tangential component of the cell function.

The method is not superconvergent: Ophk`1q in L2 norm and Ophkq in
energy norm. Superconvergence is a work in progress.
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Global problem

Local element contributions are given by

aT puT , vT q :“ pCpuT q, CpvT qqT ´ ω2µεppuT , 0q, pvT , 0qqT ` sT puT , vT q

lT pvT q :“ pf, pvT , 0qqT

Again, static condensation is possible. Global bilinear forms are obtained
by adding the local contributions

ahpuh, vhq :“
ÿ

TPT
aT pLTuT , LT vT q lhpvhq :“

ÿ

TPT
pf, pLTuT , 0qqT

We finally look for uh P Uk
h,0 such that

ahpuh, vhq “ lhpvhq @vh P Uk
h,0
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HHO performance

Resonator r0, 1s3, tetrahedral mesh, 3072 elements.

HHO(k,k) SIP-DG(k)
Degree Memory Mflops Memory Mflops

k=1 0.5 Gb 8.723 0.3 Gb 20.040
k=2 0.9 Gb 66.759 2.4 Gb 313.133
k=3 2.6 Gb 309.072 9.3 Gb 2.560.647

Computation 8.3x better, memory 3.5x better: good improvement over
DG even if the proposed method is not superconvergent yet.

Mesh h k Error Mflops DOFs Memory

0.103843 2 3.56e-5 4089984 571392 11.7 Gb
0.207712 3 1.38e-5 309072 115200 2.6 Gb
0.415631 4 1.98e-5 16287 20160 0.5 Gb
0.832917 6 1.24e-5 1265 4032 0.1 Gb
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State of HHO for Maxwell equations

HHO on Maxwell is still Work In Progress, but it already works quite well
on real-world problems

What we have already

Dirichlet and Neumann BCs

Impendance BCs and plane wave sources

Waveguide sources

Total field/scattered field formulation

What we do not have yet

Perfectly Matched Layers (= “numerical materials” used to truncate
domain in wave simulations)

Rigorous mathematical analysis

Superconvergence
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Real world test case: a waveguide mode converter

We study the S11 parameter of the depicted mode converted [Kokubo

2011] excited on the left with a TE10 mode

The simulation showcases all the currently available facilities

Mesh: 1 layer of triangular prisms generated by GMSH
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Real world test case: a waveguide mode converter

HHO vs. COMSOL: HHO uses Impedance BC, COMSOL uses PML.
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Thank you

¡Gracias por su atención!

An application-oriented book on HHO will
be available soon

Chapters 1-3: Introduction to HHO

Chapters 4-7: Applications to Solid
mechanics

Chapter 8: Implementation details

Preprint already on HAL & arXiv.

matteo.cicuttin@uliege.be
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