▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An introduction to the Hybrid High-Order method and its applications on Maxwell's equations

Matteo Cicuttin ACE Montefiore - University of Liège - Belgium

X CIMAC 2021 - Tingo María, Perú August 21, 2021

Introduction	HHO on Poisson equation	HHO on Maxwell	Real world test case
•00	0000000	000000	000
Intro			

Hybrid High-Order (HHO) methods are a recent development [Di Pietro, Ern, Lemaire 2014] in the family of Discontinuous Skeletal methods (HDG [Cockburn et al. 2009], WG [Wang et al. 2013], \dots)

- Arbitrary order
- Any element shape
- Dimension-independent formulation
- Simple *hp*-refinement

HHO is well established: wide literature (mostly in mechanics) $+\ 2$ books. In this talk:

- Intro to HHO on the Poisson equation
- HHO for time-harmonic Maxwell
- A real-world application of HHO in electromagnetics

Introduction	HHO on Poisson equation	HHO on Maxwell	Real world test case
000			
Model probler	n		

First part of this talk: Poisson equation with homogeneous BCs. Let $\Omega \subset \mathbb{R}^d$ with $d \in \{1,2,3\}$

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

In weak form, for $f \in L^2(\Omega)$ find $u \in H^1_0(\Omega)$ s.t.

$$(\nabla u, \nabla v)_{L^2(\Omega)} = (f, v)_{L^2(\Omega)} \qquad \forall v \in H^1_0(\Omega)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In the following we assume that Ω is partitioned with an appropriate polyhedral mesh $\mathcal{M}(\mathcal{T},\mathcal{F})$.

Discontinuous	Galerkin recall:	discrete space.	stencil
000	0000000	000000	000
Introduction	HHO on Poisson equation	HHO on Maxwell	Real world test case

Recall that the discrete DG space is made of polynomials of degree k attached to each mesh cell T:

$$V_h := \{ v \in L^2(\Omega) \mid \forall T \in \mathcal{M}, v_{|T} \in \mathbb{P}^k_d(T) \}.$$

- Volume term approximating solution locally + coupling via numerical fluxes. A cell T talks with all the adjacent cells.
- Global discrete solution is discontinuous.

Number of DOFs grows like $O(\#T \cdot k^d)$. Can we do better?

Reconstruc	tion operator - I		
000	• 00 00000	000000	000
Introduction	HHO on Poisson equation	HHO on Maxwell	Real world test case

Consider the divergence theorem on an element T

$$(\nabla u, \nabla v)_T = (u, \Delta v)_T + \sum_{F_i \in \partial T} (u, \nabla v \cdot \hat{\mathbf{n}})_{F_i}$$

Replace u by different functions on the cell and its faces, and introduce the operator R

$$(\nabla R(\boldsymbol{u_T}, \boldsymbol{u_{\partial T}}), \nabla \boldsymbol{v})_T := (\boldsymbol{u_T}, \Delta \boldsymbol{v})_T + \sum_{F_i \in \partial T} (\boldsymbol{u_{F_i}}, \nabla \boldsymbol{v} \cdot \hat{\boldsymbol{n}})_{F_i}$$
$$= (\nabla \boldsymbol{u_T}, \nabla \boldsymbol{v})_T + \sum_{F_i \in \partial T} (\boldsymbol{u_{F_i}} - \boldsymbol{u_T}, \nabla \boldsymbol{v} \cdot \hat{\boldsymbol{n}})_{F_i}$$

- *u_T*: cell-based function
- u_{F_i} : face-based function
- $u_{\partial T}$: $(u_{F_1}, \ldots, u_{F_n})$

We call R as defined *reconstruction operator*. Note that the operator is completely local.

	HHO on Poisson equation	HHO on Maxwell	Real world test case
	0000000		
Reconstru	iction operator - II		

More precisely, let $u_T \in \mathbb{P}_d^k(T)$, $u_{F_i} \in \mathbb{P}_{d-1}^k(F_i)$ and $v \in \mathbb{P}_d^{k+1}(T)$. We define the local HHO space

$$U_T^k := \mathbb{P}_d^k(T) \times \left\{ \bigotimes_{F_i \in \partial T} \mathbb{P}_{d-1}^k(F_i) \right\}.$$

Let $\underline{u}_T := (\underline{u}_T, u_{\partial T}) \in U_T^k$. The reconstruction $R : U_T^k \to \mathbb{P}_d^{k+1}(T)$ is uniquely defined for all $\underline{u}_T \in U_T^k$ by the equations

$$(\nabla R(\underline{u}_{T}), \nabla v)_{T} = (\nabla u_{T}, \nabla v)_{T} + \sum_{F \in \partial T} (u_{F_{i}} - u_{T}, \nabla v \cdot \hat{\mathbf{n}})_{F}$$
$$(R(\underline{u}_{T}), 1)_{T} = (u_{T}, 1)_{T}$$

R enjoys an high-order approximation property: from u_T and $u_{\partial T}$ of degree *k* we can reconstruct a polynomial of order k + 1 on the cell.

Introduction	HHO on Poisson equation	HHO on Maxwell	Real world test case
000	OO●OOOOO	000000	
Reconstruction	n operator - III		

The reconstruction operator is used to mimic the grad-grad term of our model problem

$$a_{T}(\underline{u}_{T}, \underline{v}_{T}) := (\nabla R(\underline{u}_{T}), \nabla R(\underline{v}_{T}))_{T}$$

(日) (四) (日) (日) (日)

Note that inside this term hides a degree k + 1 stiffness matrix.

	HHO on Poisson equation	HHO on Maxwell	Real world test case
000	0000000	000000	000
Stabilization -	1		

There is an issue however: u_T and $u_{\partial T}$ are still unrelated $\implies \nabla R = 0$ does **not** imply $u_T = u_{\partial T} = constant \implies$ a stabilization is needed.

We penalize the difference between u_F and the trace of u_T . First try:

$$z_{T}(\underline{u}_{T},\underline{v}_{T}) := \sum_{F_{i} \in \partial T} h_{F_{i}}^{-1}(u_{F_{i}} - \pi_{F_{i}}^{k}(u_{T}), v_{F_{i}} - \pi_{F_{i}}^{k}(v_{T}))_{F_{i}}$$

• Ask to "glue together" u_F and u_T on each face

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Works, but insufficient to achieve optimal convergence rate

	HHO on Poisson equation	HHO on Maxwell	Real world test case
000	0000000	000000	000
Stabilization -	Ш		

There are two alternative ways to achieve optimal convergence rate:

• Use a more complex stabilization

$$s_{T}(\underline{u}_{T}, \underline{v}_{T}) := \sum_{F_{i} \in \partial T} h_{F}^{-1}(u_{F_{i}} - \pi_{F_{i}}^{k} P^{k}(\underline{u}_{T}), v_{F_{i}} - \pi_{F_{i}}^{k} P^{k}(\underline{v}_{T}))_{F_{i}}$$
$$P^{k}(\underline{w}_{T}) := w_{T} - R(\underline{w}_{T}) + \pi_{T}^{k}(R(\underline{w}_{T}))$$

Essentially, it takes into account high-order components

• Take $u_T \in \mathbb{P}_d^{k+1}(T)$ and $u_{F_i} \in \mathbb{P}_{d-1}^k(F_i)$

On standard cells, method 2 makes assembly slightly cheaper.

Both alternatives allow the method to reach convergence rate $O(h^{k+2})$ in L^2 norm and $O(h^{k+1})$ in H^1 norm.

Note that again, stabilizations are completely local.

Introduction 000	HHO on Poisson equation	HHO on Maxwell 000000	Real world test case
Discrete HHO	space, assembly		

The global HHO space is obtained collecting cell and face DOFs

$$U_h^k := \left\{ \bigotimes_{T \in \mathcal{T}} \mathbb{P}_d^k(T) \right\} \times \left\{ \bigotimes_{F \in \mathcal{F}} \mathbb{P}_{d-1}^k(F) \right\}.$$

Dirichlet BCs imposed strongly as $U_{h,0}^k := \left\{ \underline{u}_h \in U_h^k \mid u_F = 0 \quad \forall F \in \Gamma \right\}.$

Note that the face DOFs are single valued. Let L_T be the standard local-to-global DOF mapping. By standard FEM assembly we compute

$$a_{h}(\underline{u}_{h},\underline{v}_{h}) := \sum_{T \in \mathcal{T}} a_{T}(L_{T}\underline{u}_{T}, L_{T}\underline{v}_{T}) + s_{T}(L_{T}\underline{u}_{T}, L_{T}\underline{v}_{T}),$$
$$l_{h}(\underline{v}_{h}) := \sum_{T \in \mathcal{T}} (f, (L_{T}u_{T}, 0))_{T}.$$

We finally look for $\underline{u}_h \in U_{h,0}^k$ such that

$$a_h(\underline{u}_h, \underline{v}_h) = I_h(\underline{v}_h), \qquad \forall \underline{v}_h \in \mathsf{U}_{h,0}^k.$$

	HHO on Poisson equation	HHO on Maxwell	Real world test case
000	00000000	000000	000
HHO stongil			

Remember that HHO operators are defined locally on cells: this means that cell unknowns talk only with face unknowns.

- Cell unknowns can be eliminated **locally** during assembly via Schur complement.
- The global problem is posed in terms of face unknowns only
- No. of DOFs grows like O(#F ⋅ k^{d-1}) vs. O(#T ⋅ k^d) of DG ⇒ we expect an improvement over DG on standard elements.

	HHO on Poisson equation	HHO on Maxwell	Real world test case
000	0000000	000000	000
Does HHO pag	y off?		

Poisson equation on $\Omega = [0, 1]^3$. Solver: PARDISO, memory in MB.

	HHO(k,k)			SIP-DG(k+1)		
k	DoFs	Mflops	Mem	DoFs	Mflops	Mem
0	5760	38	39	12288	787	85
1	17280	1006	106	30720	11429	319
2	34560	8723	292	61440	92799	1108
3	57600	40389	719	107520	497245	3215

Tetrahedral mesh, 3072 elements. k=3: HHO is 12.3x more efficient in computation, 4.5x more efficient in memory usage.

	HHO (k, k) $ $			SIP-DG(k + 1)		
k	DoFs	Mflops	Mem	DoFs	Mflops	Mem
0	11520	310	64	16384	6677	168
1	34560	9671	293	40960	104199	765
2	69120	58977	884	81920	845545	2844
3	115200	349664	2412	143360	4592328	8490

Hexahedral mesh, 4096 elements. k=3: HHO is 13.1x more efficient in computation, 3.5x more efficient in memory usage.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Introduction	HHO on Poisson equation	HHO on Maxwell	Real world test case
000	0000000	00000	000
HHO on indef	inite Maxwell proble	em	

We want to solve the electromagnetic time-harmonic wave equation

$$(\nabla\times\mathbf{e},\nabla\times\mathbf{v})_{\Omega}-\omega^{2}\mu\epsilon(\mathbf{e},\mathbf{v})_{\Omega}=(\mathbf{f},\mathbf{v})_{\Omega}.$$

Quantities appearing in the equation:

- ω : angular frequency
- μ,ϵ : piecewise constant material parameters
- $\mathbf{e}, \mathbf{v} \in H_0(\mathit{curl}; \Omega)$: unknown electric field and test function
- f: source

Motivation: curl-curl is difficult for iterative solvers, direct solvers are usually employed \implies being memory-efficient is imperative.

HHO function	spaces		
		00000	
Introduction	HHO on Poisson equation	HHO on Maxwell	Real world test case

Local HHO function space employs vector-valued polynomials:

$$U_T^k := \mathbb{P}_3^k(T)^3 \times \left\{ \bigotimes_{F \in \partial T} \mathbb{P}_2^k(F)^2 \right\}.$$

- \bullet Cell-based polynomials have values in \mathbb{C}^3
- Face-based polynomials have values in C² tangent to the face itself
 ⇒ reflects tangential continuity of e at the continuous level
 The global discrete problem space is introduced as

$$U_h^k := \left\{ \underset{T \in \mathcal{T}}{\times} \mathbb{P}_3^k(T)^3 \right\} \times \left\{ \underset{F \in \mathcal{F}}{\times} \mathbb{P}_2^k(F)^2 \right\},$$

Dirichlet conditions on $\Gamma \subset \partial \Omega$ are imposed by forcing to zero face DOFs

$$\mathsf{U}_{h,0}^k := \left\{ \underline{\mathsf{u}}_h \in U_h^k \mid \mathsf{u}_F = 0 \quad \forall F \in \mathsf{\Gamma} \right\}.$$

	HHO on Poisson equation	HHO on Maxwell	Real world test case
000	0000000	00000	000
HHO ope	rators		

In the same spirit of the reconstruction used for Poisson equation, we define the curl reconstruction as

$$(\mathcal{C}(\underline{\mathsf{u}}_{\mathcal{T}}), \mathbf{v})_{\mathcal{T}} := (\mathsf{u}_{\mathcal{T}}, \nabla \times \mathbf{v})_{\mathcal{T}} + \sum_{F \in \partial \mathcal{T}} (\mathsf{u}_{F}, \mathbf{v} \times \hat{\mathbf{n}})_{F}, \quad \forall \mathbf{v} \in \mathbb{P}_{3}^{k}(\mathcal{T})^{3}$$

Let $\gamma_{t,F}(\mathbf{u}) := \mathbf{\hat{n}} \times (\mathbf{u} \times \mathbf{\hat{n}})$ and $\pi_{\gamma}^{k} = \pi_{F}^{k} \circ \gamma_{t,F}$. We define the stabilization

$$s_{\mathcal{T}}(\underline{\mathsf{u}}_{\mathcal{T}},\underline{\mathsf{v}}_{\mathcal{T}}) := \sum_{F \in \partial \mathcal{T}} \frac{\omega^2 \mu \epsilon}{h_F} (\mathsf{u}_F - \pi_{\gamma}^k(\mathsf{u}_{\mathcal{T}}), \mathsf{v}_F - \pi_{\gamma}^k(\mathsf{v}_{\mathcal{T}}))_F,$$

with the aim of penalizing the difference between the face function and the tangential component of the cell function.

The method is not superconvergent: $O(h^{k+1})$ in L^2 norm and $O(h^k)$ in energy norm. Superconvergence is a work in progress.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction 000	HHO on Poisson equation	HHO on Maxwell ○○○●○○	Real world test case
Global probler	n		

Local element contributions are given by

$$\begin{aligned} \mathbf{a}_{\mathcal{T}}(\underline{\mathbf{u}}_{\mathcal{T}},\underline{\mathbf{v}}_{\mathcal{T}}) &:= (\mathcal{C}(\underline{\mathbf{u}}_{\mathcal{T}}),\mathcal{C}(\underline{\mathbf{v}}_{\mathcal{T}}))_{\mathcal{T}} - \omega^2 \mu \epsilon((\mathbf{u}_{\mathcal{T}},0),(\mathbf{v}_{\mathcal{T}},0))_{\mathcal{T}} + \mathbf{s}_{\mathcal{T}}(\underline{\mathbf{u}}_{\mathcal{T}},\underline{\mathbf{v}}_{\mathcal{T}}) \\ I_{\mathcal{T}}(\underline{\mathbf{v}}_{\mathcal{T}}) &:= (\mathbf{f},(\mathbf{v}_{\mathcal{T}},0))_{\mathcal{T}} \end{aligned}$$

Again, static condensation is possible. Global bilinear forms are obtained by adding the local contributions

$$a_h(\underline{u}_h, \underline{v}_h) := \sum_{T \in \mathcal{T}} a_T(L_T \underline{u}_T, L_T \underline{v}_T) \qquad l_h(\underline{v}_h) := \sum_{T \in \mathcal{T}} (\mathbf{f}, (L_T \underline{u}_T, 0))_T$$

We finally look for $\underline{u}_h \in U_{h,0}^k$ such that

$$a_h(\underline{u}_h, \underline{v}_h) = I_h(\underline{v}_h) \qquad \forall \underline{v}_h \in \mathsf{U}_{h,0}^k$$

	HHO on Poisson equation	HHO on Maxwell	Real world test case
		000000	
HHO perfo	ormance		

Resonator $[0,1]^3$, tetrahedral mesh, 3072 elements.

	HHO(k,k)		SIP-DG(k)	
Degree	Memory	Mflops	Memory	Mflops
k=1	0.5 Gb	8.723	0.3 Gb	20.040
k=2	0.9 Gb	66.759	2.4 Gb	313.133
k=3	2.6 Gb	309.072	9.3 Gb	2.560.647

Computation 8.3x better, memory 3.5x better: good improvement over DG even if the proposed method is not superconvergent **yet**.

Mesh <i>h</i>	k	Error	Mflops	DOFs	Memory
0.103843	2	3.56e-5	4089984	571392	11.7 Gb
0.207712	3	1.38e-5	309072	115200	2.6 Gb
0.415631	4	1.98e-5	16287	20160	0.5 Gb
0.832917	6	1.24e-5	1265	4032	0.1 Gb

Introduction 000	HHO on Poisson equation	HHO on Maxwell ○○○○○●	Real world test case
State of HHO	for Maxwell equation	ons	

HHO on Maxwell is still Work In Progress, but it already works quite well on real-world problems

What we have already

- Dirichlet and Neumann BCs
- Impendance BCs and plane wave sources
- Waveguide sources
- Total field/scattered field formulation

What we do not have yet

• Perfectly Matched Layers (= "numerical materials" used to truncate domain in wave simulations)

- Rigorous mathematical analysis
- Superconvergence

 Introduction
 HHO on Poisson equation
 HHO on Maxwell
 Real world test case

 000
 0000000
 000000
 000

Real world test case: a waveguide mode converter

We study the S_{11} parameter of the depicted mode converted [Kokubo 2011] excited on the left with a TE_{10} mode

- The simulation showcases all the currently available facilities
- Mesh: 1 layer of triangular prisms generated by GMSH

 Introduction
 HHO on Poisson equation
 HHO on Maxwell
 Real world test case

 000
 0000000
 000000
 000

 Real world test case:
 a waveguide mode converter

HHO vs. COMSOL: HHO uses Impedance BC, COMSOL uses PML.

- Decent agreement in the > -20 dB region
- Disagreement in the < -20 dB region because HHO lacks PML

Introduction	HHO on Poisson equation	HHO on Maxwell	Real world test case
000	0000000	000000	000
Thank you			

¡Gracias por su atención!

An application-oriented book on HHO will be available soon

- Chapters 1-3: Introduction to HHO
- Chapters 4-7: Applications to Solid mechanics
- Chapter 8: Implementation details

Preprint already on HAL & arXiv.

matteo.cicuttin@uliege.be

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @