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The presence of graphics processors (GPUs) in supercomputers constantly increased in the last decade. FDTD and DGTD (Time
Domain Discontinuous Galerkin) are traditionally employed on GPUs for their scalability, however the limitations of past hardware
required particular care in the implementation in order to obtain good performance. In this work, we discuss an implementation of
DGTD for the Maxwell’s equations on modern GPUs and we assess its performance on the simulation of an electrostatic discharge.
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I. INTRODUCTION

Recent supercomputer designs increasingly rely on GPU
accelerators, and this trend is unlikely to change in the foresee-
able future. Because of their impressive computing power and
low cost per GFlop, GPUs have always been attractive for the
scientific computing community. Their usage in computational
electromagnetics (CEM) can be traced back to [1], targeting
FDTD, and [2] targeting Discontinuous Galerkin (DG). The
latter method is especially attractive on GPU, as it combines
the advantages of FEM (handling of unstructured meshes) and
FDTD (time-explicit iteration and easy parallelization). Early
GPUs however, required careful implementation in order to
not incur into major performance penalities, as studied in [2].

Recently, renewed interest in CEM on GPU is found for
example in [3] for the Discrete Geometric Approach method
and in [4], [5] for FDTD. In this work we revisit the im-
plementation strategy of [2], to determine to which extent
the improvements found in recent hardware (CUDA compute
capability ě 3.5) would allow an algorithmic simplification
without compromising efficiency.

II. PROBLEM SETTING

Let t P R` be the time and x P R3 be the position vec-
tor. The first-order formulation of the time-domain Maxwell
equations reads

ε
Bepx, tq

Bt
“ ∇ˆ hpx, tq ´ σepx, tq ´ jspx, tq, (1)

µ
Bhpx, tq

Bt
“ ´∇ˆ epx, tq, (2)

where e and h are the electric and magnetic fields, µ, ε and σ
are the magnetic permeability, the electric permittivity and the
conductivity respectively, and js is the source current density.

Spatial discretization of equations (1) and (2) is obtained
using a DG approach [2], [6], [7], whereas for temporal
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integration either a fourth-order Runge-Kutta or a second-
order leapfrog scheme [7] can be used. Our implementation
builds on GMSH [8] and supports arbitrary polynomial order.
Differently from [2] it runs in double precision, supports
curved elements and integration can be performed using full
Gauss quadratures, giving some flexibility in the handling
of materials. In this work however, only the quadrature-
free linear tetrahedral element part of the implementation
is discussed. The DGTD/RK4 formulation is classical [6],
whereas the semi-discrete DGTD/Leapfrog formulation yields
the staggered-in-time equations

En`1 “ En `∆tLh
EpH

n`1{2,Enq, (3)

Hn`3{2 “Hn`1{2 `∆tLh
HpE

n`1,Hn`1{2q, (4)

where ∆t is the timestep size, n is the timestep number and
Lh
E ,Lh

H are the standard DG operators which include element
contributions, inter-element numerical fluxes and sources; for
space reasons we refer the reader to [7, Sec. V-A.1] for their
precise definition, including the discussion of sources and
boundary conditions.

III. DISCONTINUOUS GALERKIN ON MODERN GPUS

The DG discretization of (1) and (2) results, because of
integration by parts, in a sum of volumetric contributions and
interface contributions known as numerical fluxes [7]. In turn,
an application of either Lh

E or Lh
H results in two separate

compute paths, as detailed in Figure 1. At the discrete level,
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Fig. 1. Computations involved in one application of the DG operators Lh
E or

Lh
H . Red boxes (upper path) represent volumetric operations, whereas green

boxes (lower path) represent boundary operations.
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Lh
E and Lh

H yield a differentiation matrix, which operates on
volumetric quantities, and a lifting matrix, which operates on
numerical fluxes between elements.

The volumetric path, marked in red in Figure 1, is entirely
element-local. For each element, the DoFs of the six fields
(x, y, z components of e and h) are multiplied by the reference
element differentiation matrices; the result is subsequently
brought back to the physical element via the Jacobians. A vec-
tor subtraction then yields the curls. Differentiation matrices,
which are stored already pre-multiplied by the inverse mass
matrix, are placed in the texture cache, whereas Jacobians are
fetched directly from the global GPU memory. As locality and
arithmetic intensity on this path are ideal, full GPU utilization
is easily achieved. Differently from [2], our approach does
not make use of shared memory, so we are not doing any
microblocking [2] or padding. In turn, this simplifies the code
considerably without noticeable performance impact.

The flux path, marked in green in Figure 1, begins with the
computation of inter-element jumps, which are subsequently
stored into six auxiliary arrays. This operation completely
lacks locality, as the DOFs of two adjacent elements could
be located very far apart in memory. It also has very low
arithmetic intensity as it consists of just a subtraction. At
least in principle then, this step could quickly become the
bottleneck of the algorithm. For this reason in [2] this part
has been the subject of a careful analysis, which led to a
clever element-reordering algorithm. We observed however
that, on recent hardware, architectural improvements of the
memory hierarchy made this non-locality not problematic,
especially at high polynomial orders: in our implementation,
this stage of the algorithm achieves full memory bandwidth
utilization. The subsequent step of computing fluxes from
jumps has perfect locality and is limited only by the available
memory bandwidth. Finally, flux lifting is a plain matrix-
vector multiplication applied element-wise on the flux DoFs;
we store the reference-element lifting matrix premultiplied by
the mass matrix in the texture cache. In some situations lifting
can not reach ideal performance as data reuse is not optimal;
we are currently studying improved implementation strategies.

The results of the two paths are finally added and time
integration is performed. This phase has ideal memory access
patterns and is limited only by the available bandwidth.

The two paths are computed one after the other; we tried
different scheduling strategies (especially the usage of multiple
streams on GPU) without observing significant differences.

Volumetric field sources are subsequently applied by adding
the appropriate terms at the end of the volumetric path,
whereas interface sources (e.g. plane-wave condition [9]) are
applied by modifying the flux terms computed in the second
step of the flux path [7]. In the GPU version of the solver,
we exploit asynchronous CPU/GPU computation to evaluate
on the CPU the sources for timestep n ` 1 at the same time
the GPU is computing timestep n. The source contributions
are subsequently uploaded to the GPU with an asynchronous
copy involving only the strictly needed DOFs.

A goal of our implementation is to be compatible with both
NVidia and AMD hardware, however we do not consider the
AMD toolchain sufficiently mature yet. Therefore, we chose

to do our implementation in native CUDA and rely on the
Hipify tool to generate AMD code on the fly at compile-
time. Despite the automatic translation, the code resulting from
our approach has very good performance on AMD hardware
(Table V). Performance portability frameworks like OpenACC
and Kokkos were also considered; we determined however
that, at the time of writing, they do not provide sufficient
control over the GPU hardware to efficiently implement DG.

IV. SOLVER VALIDATION

Our solver consists in a CPU and a GPU implementation
of the DG method, and is available at the address https:
//gitlab.onelab.info/gmsh/dg/. The code is written in C++17
and targets distributed memory HPC machines. The CPU
code is parallellized with MPI; METIS is used for mesh
partitioning. The GPU code is based on CUDA and currently
limited to single GPU. Current GPUs come with fairly large
amounts of memory (ě 32GB) and real world models are
easily handled: the DG/RK4 solver (worst case) allows for
roughly 6.27 million DOFs per GByte of available GPU
memory, or 250 million DOFs on a NVidia A100 GPU. In
order to tackle very large scale problems however, multi-GPU
support is currently being added.

A. Convergence analysis and cost estimation

In order to perform a basic validation of the solver, conver-
gence rates of the error ||e´eh||L2pΩq between the analytical
solution e and the numerical solution eh were measured on the
r0, 1s3 resonant cavity model problem using three successively
refined meshes with element size h P t0.2, 0.1, 0.05u. In
addition, we compared the accuracy of the DG approximation
against a FEM solution of the second-order formulation

∇ˆ 1

µ
∇ˆ epx, tq ` σ

Bepx, tq

Bt
` ε
B2epx, tq

Bt2
“ ´

Bjspx, tq

Bt
.

This formulation is solved with our FEM code [11] on the
same meshes used for the DG computation. While multiple
FEM strategies are possible, in order to have numerical
properties similar to DG, we chose to do temporal integration
via a Newmark β “ 1{2, γ “ 1{4 scheme which, like the
Leapfrog scheme, is non-dissipative. Despite the more relaxed
timestep requirements of FEM, we chose ∆t “ 10´11s for
both methods, which ensures at the same time that (i) DG
is stable and (ii) the error in FEM is dominated by spatial
discretization.

In a comparison between DG/RK4 and FEM on the same
mesh, DG provides a slightly more accurate solution (Tables I
and II). DG/Leapfrog however, especially at order 2, exhibits a
loss of convergence due to the insufficient accuracy of the time
integration (Tables I and III). In order to restore the correct
convergence order and an accuracy comparable with FEM, the
DG timestep had to be lowered by one order of magnitude
(∆t “ 10´12s), implying a 10 times increase in the number
of iterations (and thus computational cost) needed to arrive at
the same final time.

The FEM formulation linear system is solved with MUMPS,
therefore the total computational time tFEM of a FEM run of
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n iterations is split between an one-time matrix factorization
(Tf ) and a backsubstitution at each time iteration (Tb), yielding
tFEM “ Tb ¨ n ` Tf . On the other hand, DG spends all the
computational time in the iterations (Td), therefore tDG “

Td ¨ n. The two expressions cross at n “ Tf

Td´Tb
, where a

negative result indicates that the DG solver is asymptotically
faster than FEM in the considered setting. For DG/RK4 this is
always the case (Tables I and II), whereas for DG/Leapfrog,
10 ¨ Td ă Tb in all cases except the smaller one (Table III).

TABLE I
FEM ERRORS AND TIMES FOR ORDERS 1 AND 2 (∆t “ 10´11).

FEM order 1 FEM order 2
h Error Tf Tb Error Tf Tb

.2 9.37e-3 8.5e-3 4.2e-4 1.21e-3 5.7e-2 3.9e-3

.1 2.85e-3 1.3e-1 7.3e-3 2.09e-4 1.1e0 4.9e-2
.05 7.45e-4 3.5e0 1.1e-1 2.33e-5 3.7e1 6.5e-1

TABLE II
DG/RK4 ERRORS AND TIMES FOR ORDERS 1 AND 2 (∆t “ 10´11).

DG/RK4 order 1 DG/RK4 order 2
h Error Td Error Td

.2 2.85e-3 4.10e-4 5.90e-4 1.04e-3

.1 1.07e-3 1.20e-3 8.04e-5 5.83e-3
.05 3.88e-4 3.34e-2 1.19e-5 7.92e-2

TABLE III
DG/LEAPFROG ERRORS AND TIMES FOR ORDERS 1 AND 2. ERRORS ARE

REPORTED FOR ∆t “ 10´11 AND FOR ∆t “ 10´12 (SEE TEXT).

DG/Leapfrog order 1 DG/Leapfrog order 2
h 10´11 10´12 Td 10´11 10´12 Td

.2 2.85e-3 2.74e-3 1.3e-4 7.52e-4 5.76e-4 2.8e-4

.1 1.31e-3 1.02e-3 3.9e-4 4.93e-4 9.14e-5 1.3e-3
.05 7.63e-4 3.81e-4 9.8e-3 3.62e-3 4.61e-5 2.1e-2

The choice of a direct solver is dictated by the fact that,
as it is well known, the second-order formulation yields a
linear system which is problematic for iterative solvers. The
resource usage of direct solvers however severely limits the
size of the problem (Table IV) if sophisticated strategies like
domain decomposition [12] are not used.

TABLE IV
MEMORY CONSUMPTION OF THE TWO SOLVERS. FOR DG WE SHOW THE

DG/RK4 DATA, WHICH REPRESENTS THE WORST CASE.

FEM order 1 FEM order 2
h DOFs Mem DOFs Mem
.2 1.1k 46M 5.3k 94M
.1 8.7k 166M 39k 805M

.05 76k 1.48G 324k 9.23G
DG order 1 DG order 2

.2 17k 34M 43k 34M

.1 112k 62M 281k 105M
.05 872k 414M 2.18M 759M

B. CPU and GPU performance validation

Our hardware includes NVidia K20X and V100 GPUs;
AMD MI100 GPU; Xeon Gold 6126, Ryzen 5 3600X and
EPYC 7542 CPUs. The GPUs are HPC-grade and capable of

double precision. At the time of writing, the MI100 is the
AMD’s latest model and is the performance-equivalent of the
latest NVidia hardware, the A100. In turn, the A100 is one
generation ahead of the V100. Finally, the K20x is used in
some of our development machines.

TABLE V
PERFORMANCE IN DOFS/S OF THE SOLVER ON DIFFERENT GPUS.

Order K20X V100 MI100
1 3.43e8 1.24e9 1.50e9
2 4.01e8 1.44e9 1.83e9
3 3.80e8 1.38e9 1.84e9

The variety of CPUs/GPUs we used allowed to validate
the consistency of our approach across multiple vendors and
generations of hardware. Using the GPU diagnostic tools we
determined that, at order 3, the V100 draws about 140W
(9.86e6 DOFs/s per watt), compared to 260W for the MI100
(7.08e6 DoFs/s per watt). The metric “DoFs/s” does not
include auxiliary DoFs therefore, for DG, DoFs “ 6 ¨#T ¨Nk,
where 6 is for the tx, y, zu components of e and h, #T is
the number of mesh elements and Nk is the local basis size.

V. SIMULATION OF AN ESD DISCHARGE

As real-world test case we simulated a standard ESD test on
the device depicted in Figure 2 using the technique described
in [10]; we refer the reader to that work for the details. The

Fig. 2. An discharge is applied to the top-right corner of an heatsink (gray)
containing a PCB (not shown) with some integrated circuits (colored boxes).

simulated device consists of an aluminium box (σ “ 36.9e6)
containing a PCB (not shown) with some integrated circuits
(Figure 2). After establishing the appropriate initial electro-
static field [10] between the device and the tip of the ESD
gun (aluminum cylinder at the top-right corner of the device,
Figure 3) a normalized CENELEC discharge was applied [10]
(Figure 5). The device is enclosed in an air sphere which, in
turn, is terminated with a Silver-Müller condition. The domain
was discretized with two meshes, a low resolution one and a
high resolution one. The first yields a problem of 1.8M DoFs,
whereas the second yields 12.96M DoFs. Order 1 DG was
used, as the element size is constrained by geometry details.

The strong scaling analysis of the CPU DG code on a single
node, dual socket machine based on the AMD EPYC 7542
is reported in Figure 4. Data indicates that scaling is almost
ideal up to 16 processors. Beyond, the 16 memory channels

Authorized licensed use limited to: University of Liege (ULg). Downloaded on June 15,2022 at 07:35:03 UTC from IEEE Xplore.  Restrictions apply. 



0018-9464 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMAG.2022.3179309, IEEE
Transactions on Magnetics

IEEE TRANSACTIONS ON MAGNETICS, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 3. The yellow cylinder models the ESD gun tip, whereas the blue cylinder
models a 2mm air gap between the tip and the device.
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Fig. 4. CPU code scales linearly up to 16 processes. Above 16 processes,
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available on the machine are saturated and the additional
observed speedup is limited: we remark the matching between
the scaling curves and the available memory bandwidth curve.
Because of the intrinsic limits of direct solvers, FEM scales
worse than DG. On the high resolution mesh we measured
91k DoFs/s on 1 CPU, 186k on 4 CPUs and 202k on 8 CPUs.

The GPU solver always runs with one process and speedups
relative to the CPU solver are reported in Table VI. A

TABLE VI
DG PERFORMANCE ON THE TWO ESD TEST CASES AND GPU SPEEDUP

Low resolution High resolution
CPUs DOFs/s Td GPU DOFs/s Td GPU

1 4.49e7 3.99e-2 31.2x 2.65e7 0.487 52.8x
2 6.51e7 2.76e-2 21.5x 4.82e7 0.269 29.1x
4 1.94e8 9.26e-3 7.2x 1.25e8 0.103 11.2x
8 3.66e8 4.91e-3 3.8x 2.68e8 0.048 5.2x
16 6.74e8 2.66e-3 2.1x 2.46e8 0.052 5.8x

2.1x speedup in the worst case may seem limited, however
economic considerations must be taken into account: the price
and the power consumption of a large high-end machine like
the one we used in our tests surpass considerabily those of
a GPU accelerator card. GPUs therefore represent a concrete
computational resource for midrange technical workstations.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

We provided an account about our experience of imple-
menting DG methods on GPUs. The main outcome is a

Fig. 5. Electric field magnitude during the rising of the discharge pulse (left),
and after approximately 60ns (right).

confirmation that DG on recent GPU hardware can outperform
the most high-end CPUs by a considerable margin, especially
if economics are taken into account. In addition, compared to
past GPUs, recent improvements allow to attain high levels
of performance with a reduced algorithm design effort. Our
future work will be focused in developing and benchmarking
the multi-GPU DG method.

VII. ACKNOWLEDGEMENT

This work was funded in part by the PRACE EU H2020
project (grant agreement 823767) and by the Wallon Region
(M&SScot Network project, Mecatech call 26).

REFERENCES

[1] Takada, N., Shimobaba, T., Masuda, N., Ito, T., “High-speed FDTD
simulation algorithm for GPU with compute unified device architecture”.
2009 IEEE Antennas and Propagation Society International Symposium
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