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We present a preliminary numerical evaluation of the Hybrid High-Order (HHO) method applied to the indefinite time-harmonic
Maxwell problem. HHO is a recently developed member of the family of Discontinuous Sketetal methods, to which belongs also the well-
established Hybridizable Discontinuous Galerkin method. HHO provides different valuable assets such as simple construction, support
for fully-polyhedral meshes and arbitrary polynomial order, great computational efficiency, physical accuracy and straightforward
support for hp-refinement.
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I. INTRODUCTION

THE HYBRID HIGH-ORDER method [1], [2] is a recent
development in the family of the Discontinuous Skeletal

methods which adds to the family of polyhedral discretizations
already deployed on computational electromagnetics problems
[3], [4], [5]. HHO is already successful in a multitude of fields,
including magnetostatics [6]. In this work we present an HHO
method for the time-harmonic Maxwell problem. As the time-
harmonic Maxwell problem is notoriously hard to solve with
iterative methods [7], direct solvers are frequently employed.
Direct solvers however require huge amounts of memory, and
for this reason efficient, high-order discretization techniques
are of utmost importance. By employing skeletal, that is, face-
based, unknowns HHO is an excellent candidate for this task.

II. PROBLEM SETTING

Let Ω be an open, simply connected subset of R3 (the
method is suitable for any spatial dimension, we take d “ 3
for conciseness). We consider the time-harmonic problem with
homogeneous Dirichlet boundary conditions

pµ´1∇ˆ e,∇ˆ vqL2pΩq ´ ω
2pεe,vqL2pΩq “ pf ,vq, (1)

where ω is the angular frequency, µ, ε are piecewise constant
material parameters, e,v P H0pcurl; Ωq are the unknown
electric field and the test function respectively; f is the source.
A more general setting will be discussed in the full paper.

III. THE HHO FUNCTION SPACES

Let MpT ,Fq be a polyhedral mesh with #T cells, #F
faces, maximum element size h, T P T a cell and F P F a
face. We attach to each element T a cell-based vector-valued
polynomial Pk3pT q and to each one of its n faces F P BT a
face-based vector-valued polynomial Pk2pF q of degree k ě 1.
By collecting those polynomials, the element-local space of
degrees of freedom is formed and denoted as

UkT :“ Pk3pT q ˆ

#

ą

FPBT

Pk2pF q

+

.

Cell-based polynomials have values in C3 whereas face-based
polynomials have values in C2 tangent to the face itself. The
global discrete problem space is introduced as

Ukh :“

#

ą

TPT
Pk3pT q

+

ˆ

#

ą

FPF
Pk2pF q

+

,

where the face-based functions are single-valued. The elements
of UkT are denoted as the pairs uT :“ puT , uBT q. In turn, uT and
uBT are the cell-based and the collection of face-based polyno-
mials respectively. Similarly, uh P U

k
h and uh is the cell-based

part of Ukh. Homogeneous Dirichlet boundary conditions are
enforced strongly by setting to zero the unknowns associated
to the boundary faces:

Ukh,0 :“
 

uh P U
k
h | uF “ 0 @F P Γ

(

.

Let also γt,F puq :“ n̂ˆpuˆ n̂q, with n̂ the outward normal.

IV. THE HHO OPERATORS

The general idea behind skeletal methods is to define an
element-local solver which couples to the neighbouring ele-
ments via face-based unknowns only. Subsequently, cell-based
unknowns are eliminated locally via a Schur complement,
obtaining a global transmission problem posed in terms of face
unknowns only. In HHO such local solvers are embodied by the
reconstruction operator [1]. The curl reconstruction operator
C : UkT Ñ Pk3pT q is defined as the well-posed problem

pCuT ,vqL2pT q :“ puT ,∇ˆ vqL2pT q

`
ÿ

FPBT

puF ,v ˆ n̂qL2pF q,
@v P Pk3pT q

The computation of C requires inverting a mass matrix in
each element; this is done just once if a reference element
is available. Let πkF be the standard face-based L2-orthogonal
projector, let also πkγ “ πkF ˝ γt,F . The stabilization penal-
izes the difference between the face-based functions and the
tangential component of the cell-based function:

sT puT , vT q :“
ÿ

FPBT

κ2

hF
puF ´ π

k
γpuT q, vF ´ π

k
γpvT qqL2pF q,

where κ2 “ ω2µε and hF is the size of the face F .



V. DISCRETE PROBLEM

We use now the curl reconstruction to mimic locally the
curl-curl term of (1); we collect this term alongside with the
stabilization and the discrete equivalent of the mass term of
(1) in the bilinear form

aT peT , vT q :“µ´1pCeT , CvT qL2pT q ` sT peT , vT q

´ ω2εppeT , 0q, pvT , 0qqL2pT q

lT pvT q :“ pf , pvT , 0qqL2pT q

Static condensation is applied locally to eliminate cell-based
DOFs, we refer the reader to [8] for the details. The global
problem is obtained by a standard finite element assembly as

ahpeh, vhq :“
ÿ

TPT
aT pLT eh, LT vhq,

lhpvhq :“
ÿ

TPT
lT pLT vhq,

where LT is the classical global-to-local element numbering
mapping. We finally solve the global discrete problem of
finding eh P U

k
h,0 such that

ahpeh, vhq “ lhpvhq @vT P U
k
h,0.

VI. CONCLUSIONS

The described HHO method is implemented in the DiSk++
code (https://github.com/wareHHOuse/diskpp)
and tested on a resonant cavity problem in the domain
r0, 1s3. The RHS is chosen to obtain the solution
e “ p0, 0, sinpωxqsinpωyqqT with ω “ π and ν “ ε “ 1.
The linear system is solved using PARDISO. We observed
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Fig. 1. L2-norm convergence rates of HHO compared to Symmetric Interior
Penalty Discontinuous Galerkin on tetrahedral meshes.

the expected Ophk`1q convergence in L2-norm and an Ophkq
convergence in energy norm. We compare the convergence

TABLE I
COMPUTATIONAL COST COMPARISON BETWEEN HHO VS. SIP-DG ON A

TETRAHEDRAL MESH OF 3072 ELEMENTS.

HHO SIP-DG
Degree Memory Mflops Memory Mflops

k=1 0.5 Gb 8.723 0.3 Gb 20.040
k=2 0.9 Gb 66.759 2.4 Gb 313.133
k=3 2.6 Gb 309.072 9.3 Gb 2.560.647

rates to a classical Symmetric Interior Penalty Discontinuous
Galerkin (SIP-DG) discretization in Figure 1.

Figure 2 and Table I report the number of operations done
by the PARDISO linear solver when deployed on HHO and
SIP-DG respectively.
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Fig. 2. Number of floating poing operations done by the linear solver.
Comparison of HHO vs. SIP-DG on tetrahedral meshes. At high polynomial
order, HHO is one order of magnitude cheaper than SIP-DG.

The better performance of HHO is explained by the fact
that, by using skeletal unknowns, the number of DOFs grows as
Op#F ¨kd´1q, compared to Op#T ¨kdq in SIP-DG. Moreover,
HHO stencil is better suited for the euristics of linear solvers.

We conclude with Table II, in which we analyze the cost
of HHO to attain a certain error while varying mesh size and
polynomial order.

TABLE II
COMPUTATIONAL EFFORT REQUIRED FOR HHO TO ATTAIN ROUGHLY THE

SAME L2-NORM ERROR AT DIFFERENT POLYNOMIAL ORDERS.

Mesh h k Error Mflops DOFs Memory
0.103843 2 3.56e-5 4089984 571392 11.7 Gb
0.207712 3 1.38e-5 309072 115200 2.6 Gb
0.415631 4 1.98e-5 16287 20160 0.5 Gb
0.832917 6 1.24e-5 1265 4032 0.1 Gb
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